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Abstract

  Future systems performance requirements have led to a heightened awareness of the erosion issue
and to the development of erosion investigations in the U.S. Army and Navy.  These investigations
involve experimental and modeling efforts to understand the thermal, chemical, and mechanical
contributions to erosion/wear.  A description of the mechanistic erosion representation follows in this
report.  The calculation procedure is illustrated, including details of the mass transport scheme,
gas surface interface, surface melt wipe model with dynamic gridding, and the equilibrium kinetics
model, which utilizes the NASA Lewis thermochemcial library.
   The following cartridges are investigated:  the M829A2 APFSDS in the M256 120-mm tank cannon
and the M791-APDS-T and 616W-APFS (the “original” M919), both in the 25-mm Bushmaster
cannon.  The resulting mass lost per round for these systems compares well qualitatively with the
experimental data, providing some support to the assumptions in the code.  The primary conclusion is
that carburization leading to iron carbide formation is an important contributing factor for much of the
material lost from the steel barrel once it is exposed through cracks or chips in the surface coating.
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1.  Introduction

System performance demands are forcing changes in gun tubes in the areas of pressure limits, length,

firing rate, and erosion resistance.  This has created a resurgence of the interest in gun tube erosion and the

associated mechanisms.  Historically, the propellant adiabatic flame temperature was used as an indicator

of the erosivity of a propellant.  Unfortunately, flame temperature is not the only factor [1, 2] influencing

the erosion process, which includes mechanical abrasion, pyrolysis, melting, and spalling.  Also, once the

erosion rate was predicted using the flame temperature correlations, understanding what could be done to

mitigate the erosion was left a mystery with the exception of the obvious solution of applying surface

coatings or ablatives.  

The effectiveness of surface coatings depends upon the ability of the coating to block the thermal and

chemical attack of the propellant combustion products with the gun bore surface.  Permanent tube coatings,

such as chromium, have been successfully implemented in both artillery and direct-fire systems.  One

concern for the use of chromium as a coating is that the hexavalent state used in electroplating is

environmentally undesirable to the level that one day it may be eliminated as a design option.  Many other

coatings, such as functionally gradient coatings and ceramic coatings, although unsuccessful in the past, are

continuously being examined as possible candidates [3].  Also being examined are refractory metals, such

as rhenium, molybdenum, niobium, and tantalum, of which tantalum appears to be the optimal choice [4].

Much effort is being placed in coating process technology for these materials by various elements of the

Army and Navy. Successful implementation of propelling charge additives, such as talc, TiO2, waxes,

greases, and combinations thereof, that deposit on the tube or in the boundary layer and act as coatings

are usually Edisonian in nature and without knowledge of the mechanisms of how or why one additive

works better than another.

Attempts to model erosion using first principles have been and are currently being made [5–8], although

it is believed that significant additional work is still required to understand the fundamental physics involved.

In this report the possible mechanisms will be elaborated upon and then applied to specific systems.
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2.  Mechanistic Description

A modular treatment of the contributing factors to erosion consisting of three fully coupled portions, to

include thermal ablation with an iterative solution for the surface regression; independent heat and

multicomponent species mass transport to the surface; and full equilibrium thermochemistry was utilized.

The contributions due to mechanical wear and abrasion, however, are not included.  A surface control

volume treatment ensures conservation of mass.  The gas-phase properties in the core flow of the gun tube

from the XKTC [9] or NGEN [10] interior ballistic codes are used in the calculations, as well as species

data from IBBLAKE [11–13] or NGEN.  The thermochemistry calculation incorporates the NASA Lewis

[14] thermochemical database.

Primary features include:

• Variable surface thermo-physical properties:  specific heat Cp and conductivity k.

• Surface material phase change from base-centered cubic (BCC) to face-centered cubic (FCC).  The

material replenishment section recognizes the surface temperature and the correct phase.  There are

no phase change hysteresis nor are there two-phase (BCC+FCC) regions.

• A user-defined “freeze-out” temperature to enable the surface chemistry portion.

• A user selection for two-phase control volume temperature: (1) Surface temperature and (2) a mixture

control volume temperature with both gas- and solid-phase contributions. 

• User-defined surface materials, both reactant and product species.

• A user-defined surface coating - if any.
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• No hardwired inputs.  All primary inputs are user defined.

The following assumptions are in the model:

• One-dimensional (1-D) heat conduction.

• Subsurface 1-D diffusion only of carbon.

• All surface liquids and gas products are removed.

• No feedback to the interior ballistics calculation in the core flow.

• Released chemical energy treated as a source term.

• Species are chemically frozen from core flow to the wall.

The description, shown conceptually in Figure 1, enables the surface to heat convectively until the

user-defined freeze-out temperature is overcome.  At this point, the control volume at the surface is defined

and supplied with species from the mass transport routines.  Surface reactions are then permitted to occur,

which release additional energy into the system as a surface source term and produce various gas, solid,

or liquid products.  The reaction products can be either unvaried, as some solid materials, or be removed

from the area as liquids or gases.  The latter case results in pyrolysis or ablation.  As the surface regresses,

the solids are refreshed accordingly with fresh steel.

Preliminary calculations must be made using interior ballistic codes to provide the core flow state

variables of temperature and pressure as well as the velocity and the species concentrations.  These outputs

are then used as input along with a user-defined input file to the calculation.
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Figure 1.  Conceptual Erosion Description.

3.  Ablation-Conduction Model and Computational
Approach

The in-depth temperature response, T(r), of the unablated (solid) material is modeled using the 1-D

heat conduction equation as follows:

(1)DCp
MT
Mt

'
1

r$
M
Mr

r $kMT
Mr

.

By setting $ ' 0 or $ ' 1, the planar or axisymmetric form of the governing equation can be obtained.  In

this form of the equation, the relevant material properties are density, D, specific heat, Cp, and conductivity,

k.  The conductivity and specific heat may vary but must remain continuous.  



5

Twall ' Tmelt (3)

DL
Mssurf

Mt
' h Tgas& Twall % k MT

Mr
& Source . (4)

hamb Touter&wall& T4 ' &k MT
Mr

(5)

The surface (heat) energy balance, while gross melting is not occurring, includes the convective heat

input to the surface along with the possible contribution due to the surface reaction, shown in equation 2.

This source term is balanced with the energy conducted through the material.

(2)h Tgas ! Twall ' !k MT
Mr

& source

However, when the system is melting, the energy balance also includes the fixed-surface temperature

condition and the unknown surface location.  The surface temperature cannot rise beyond the specified

melting value because any additional energy is applied to the latent heat of formation of the molten material,

as shown in equations 3 and 4, where Ssurf is the surface location: 

To provide closure for the in-depth temperature response of the gun tube, a convective boundary condition

is applied to the outer surface of the gun tube.

The governing equations and boundary conditions are solved using a Crank-Nicholson finite-difference

technique.  Prior to the onset of melting, the governing equations and boundary conditions are linear and

solutions are obtained in a direct (noniterative) fashion.  During the melting process, the equations become

nonlinear since the dimensions of the computational domain are coupled with the regression rate.  An

iterative approach is utilized during melting to appropriately address the nonlinearity.

Because the boundary of the computational domain moves during the erosion event, a transformed

version of the governing equation is employed.  This allows the equations to be solved in a fixed

computational space even though the physical boundary is moving.  A generalized transformation between



6

DCp
MT
Mt

% >t
MT
M>

'
1
r
>r

M
M>

rk>r
MT
M>

>t '
&rt

r>
/ Mr

Mt
M>
Mr

>r '
1
r>

/ M>
Mr

the computational coordinate, >, and the physical coordinate, r, is utilized.  The transformed equations are

shown below.

(6)

In this form, the nonlinear nature of the governing equation produced by the moving boundary is evident

because the metric terms, >r and >t, are not constant and are dependent on the erosion rate when the grid

is moving.

This methodology compares very well to the semianalytical solutions of Landau [15] in test cases [7].

4.  Heat Transport to Surface

The heat flux to the surface is provided through convective heat transport and energy release as shown

[16, 17].

(7)Qw ' 0.037 µ(

P
Re (0.8 Cf

Cf i

Cp Tg&Tw ,

where  is the compressible skin friction ratio, Re* is the compressible Reynolds number, µ* is the
Cf

Cfi

viscosity, P is a pressure normalized length scale from the entrance region, CP is the specific heat of the

gases, and Tg and Tw are the gas temperature and wall temperature, respectively.
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This heat flux reduces to the following boundary condition imposed upon the inner wall:

(8)!k MT
M r

' hconv Tg & Tw % source .

This boundary condition has been modified for erosion studies with the incorporation of surface defects

primarily in coated gun tubes.  This has been done by using the ratio of the Stanton numbers

(Nusselt/Reynolds/Prandtl) for smooth and rough tubes, defined by the depth of the pit.  The frictional

factor may be computed by solving Colbrook’s function [18], as shown in equation 9.

(9)f&1/2
' !2log e/D

3.7
%

2.51

f ReD

,

with e the depth of the defect, D the bore diameter, and ReD the Reynolds number.  The computation of

the Stanton number for rough and smooth surfaces can be performed through the following set of equations

and instructions in the Handbook of Single-Phase  Heat Transfer [19].

(10)B(e%) '
2
f
% 2.5 ln 2e

D
% 3.75 ,

where f is the friction factor and e+ is defined as

(11)e% '
e
D

Re f
2

.

The following transcendental correlation provides the Stanton number.
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(12)g(e %)Pr n
'

f/(2St) & 1

f/2
% B(e %) ,

which when reduced results in the following relationship:

(13)St ' f/2

1 % f/2 g(e %)Pr n ! B(e %)
.

The ratio of the smooth Stanton number to that of the current “rough” Stanton number using the erosion

depth as the dimension of the defect “e” provides some measure to the augmentation due to the flow

disturbances of a sand grain type roughness.

5.  Multicomponent Diffusion and Mass Transport Scheme

Mass transport to the surface is provided through a concentration potential N i core flow ! Ni wall for each

species i and a mass transport coefficient, hm, derived from Sherwood number correlations integrated over

space and time [8], as shown in equation 14:

(14)Massi ' mmhm Nicore& flow ! Niwall dAdt .

Currently, species are assumed not to penetrate the surface, with the exception of carbon; however, the

diffusion module is general enough to readily incorporate this possibility in the future.

In order to derive the mass transport coefficient, hm, for a specific species from the Sherwood number,

Sh / hmL/DAB, where L is a length parameter, the diffusion coefficient, D12, of species 1 into species 2 must

be determined.  The Lennard-Jones 6–12 model is used to model the binary diffusion [20].
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(15)D12 '
0.0026280 T3 (M1%M2) /2M1M2

PF2
12 S(1,1)

12 T12

,

where M1, M2 are the molecular weights of the binary species, T is the temperature, P is the pressure, F12

is the collision diameter, and S12
(1,1) is the collisional cross section integral obtained through table

interpolation.

The binary diffusion provides the basis for the multicomponent diffusion coefficient.  Each binary

diffusion possibility for species i, j, is used and weighted vs. all other possibilities in the following mixture

coefficient combinatory methodology of Wilke in Anderson  [21].

(16)Dim '
1&Xi

j
jÖi

Xj

Dij

,

thus enabling the calculation of the diffusion coefficient for a particular specie into a mixture of many

species.

Utilizing the collisional cross sections and diameters for viscosity as well as the molecular weight, the

following relationship derived from kinetic theory [20] is utilized to determine the viscosity and subsequently

the mixture viscosity using Wilke’s rule in Anderson [21].

(17)µ ' 2.6693 × 10!5 MT

F2
12S 12µ

The Schmidt number, Sc ' µ/DDAB, where D is the density and µ is the mixture viscosity, is used to

determine which regime of mass transport is applicable.  At moderate Schmidt numbers (10 < Sc < 1000),
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the thickness of the boundary layer is much greater than the thickness of the viscous sublayer; utilizing the

momentum integral method, Ruckenstein [22] derived the following Sherwood number:

(18)Sh '
0.0097 Re

9
10 Sc

1
2 1.10 % 0.44 Sc

! 1
3 ! 0.70 Sc

! 1
6

1 % 0.064 Sc
1
2 1.10 % 0.44 Sc

!
1
3 ! 0.70 Sc

!
1
6

.

For higher Schmidt numbers (Sc > 1000), the thickness of the boundary layer becomes the order of

magnitude of the thin wall-layer and the following relationship is applicable [23]:

(19)Sh ' 0.0102Re
9

10 Sc
1
3 .

These expressions for the Sherwood number have been compared [23] with much experimental data and

agree well within the Schmidt number regions specified.

6.  Equilibrium Kinetics

Equilibrium chemical processes are considered to dominate whenever the characteristic time for a fluid

element to traverse the flow field of interest  is much longer than the characteristic time for chemical

reactions to approach equilibrium.  As the pressure and temperature increase, the molecular collision

frequency and energy per collision increases, which leads to smaller characteristic chemical times, and

chemical processes approach equilibrium.

The condition for chemical equilibrium may be stated as the minimization of the Gibbs Free Energy.

For a mixture of N species (e.g., atoms or molecules), where the number of moles of species, i, is denoted

ni, the Gibbs Free Energy per mole of mixture is given in terms of the Gibbs Free Energy of the individual
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species, gi, the internal energy, e, the temperature, T, the entropy, s, the total pressure, p, and the specific

volume, v.

(20)G ' j
N

i ' 1
ni gi ' e ! Ts % pv

The equilibrium method employed in the present study is based on the fact that at equilibrium the total

Gibbs energy of the system attains a minimum value.  The problem is to find the set of ni’s that minimizes

G for a specified energy and specific volume (e, V), subject to the constraints of material balances.  The

standard solution to this type of problem is based on the method of Lagrange’s undetermined multipliers.

First we must recognize that the total number of atoms of each element in the system is constant.  A

particular atomic species is denoted by the subscript k, and Ak is the total number of atomic masses of the

k-th element in the system, as determined by the initial constitution of the system.  Denoting the number of

atoms of the k-th element present in each molecule of chemical species i by aik, then the material balance

on each element k may be written (M used here is the number of elements),

(21)j
M

k ' 1
8k j

N

i ' 1
(ni aik!Ak) ' 0 (k ' 1,2,...,M)

after introducing Lagrange multipliers, 8k, for each element.  Then a new function, F, is formed by addition

of the last equation to G.  The function, F, is identical to G since the summation term is zero.  However, MF
Mni

and  are different since F incorporates the constraints of the material balances.  The minimum of bothMG
Mni

F and G occurs when these partial derivatives are zero.

(22)F ' G % j
M

k ' 1
8k j

N

i ' 1
ni aik ! Ak
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(23)MF
Mni e, V, ni

'
MG
Mni e, V, n i

% j
M

k ' 1
8k aik ' 0 (for Fmin ) (i ' 1, N )

This equation can be rewritten using the definition of chemical potential "i, for species i, where Ru is the

universal gas constant.

(24)*i '
MG
Mni e, V, n i

' Go
i % RuTln("i) ( i ' 1, N )

Therefore, from equation 23

(25)*i % j
M

k ' 1
8kaik ' 0 (i ' 1, 2,..., N) .

The standard Gibbs Free Energy change of formation for species i is denoted Gi
o, which is equal to zero

for elements in their standard states.  The activity for species i in solution is given by "i defined in terms of

the equilibrium constant, K, as,

(26)K ' AN
i "

<i

i ,

where the activities of the components are raised to the corresponding stoichiometric coefficients, <i.  For

an ideal gas mixture (OiNi ' 1), where Ni is the void fraction,

(27)"i ' fi ' Xi N i p ' p ,

where fi is the fugacity and Xi is the mole fraction for the i-th species.  For liquid and solid phases [24],
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(28)ln("i ) ' ln (1 ! 1 /p) ,

which is approximately zero for large pressure, therefore, *i '  Gi
o from equation 24.

There are N equilibrium equations (equation 25), one for each species, and there are M

material-balance equations (equation 21), one for each element, a total of N % M equations.  The

unknowns in these equations are the ni’s, of which there are N, and the 8k’s, of which there are M, a total

of N % M.  Thus, the number of equations is sufficient for the determination of all unknowns.  Numerical

experiments were performed with well-known gas-phase systems of which the results matched those of

the NASA Lewis equilibrium code [14].

7.  Surface Description

The full equilibrium control volume approach results in many product mass fractions, which are

physically impossible due to the constraints of diffusion into the solid phase.  Mainly, the carbon in the

control volume, which results from CO and/or CO2 breakdown, will react with as much iron as possible

to form Fe3C if permitted.  To treat this deficiency, the carbon content in the steel resulting from the

diffusion over the current time step has been integrated.  This represents the total amount of carbon that

may possibly react with the steel while the extra carbon released into the control volume is left as carbon

graphite C(GR).

A surface exposed to a carbon concentration G per unit surface area for a specified length of time t has

a carbon concentration C(x) at a specified depth of x given by the following relationship [25]:

(29)C(x) '
G

BDt
e

!x 2

4 Dt ,

where D is the diffusion coefficient provided over the " and ( phases (BCC and FCC lattice structure,

respectively).  The diffusion of carbon into " iron (T < 1118o C) is given by the following function in

Smithells Metals Reference Handbook [25], where Ru is the universal gas constant.
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(30)D ' 0.008e !19.8 (cal/mol)
RuT

% 2.2e !29.3 (cal/mol)
RuT

cm2

s
,

while the diffusion of carbon into ( iron ( T < 1300o C) is provided by 

(31)D ' 0.36e 36 (cal/mol)
RuT

cm2

s
.

To find the total amount of carbon that has diffused in time t, the concentration function can be integrated,

having an error function solution as

(32)m
x

0

C (x)dx '
G

BDt m
x

0

e
!x 2

4 Dt dx ' G(erf(x)) .

Integrating the concentration profile to the maximum depth to which material can diffuse in time step t,

/(Dt), provides the carbon diffused into the material over the time period.  Usually this depth ranges from

20 to 80 lattice parameters.  To treat the reactant product from the full equilibrium calculation, a subset

reaction is created consisting of the carbon, iron (") and iron ((), and iron carbide.  The total carbon

available for reaction is equal to the diffused carbon plus the original carbon in the steel as well as the

possible carbon on surface, also in the form of iron carbide as shown on the left-hand side of the following

equation:

(33)C (GR) % Fe3C % Fe (") % Fe (() 6 C (GR) % Fe3C % Fe (") % Fe (() ,

where Fe(") or Fe(() are supplied as fresh material, as needed, depending upon the control volume

temperature.  There is assumed no carbon dissolved in Fe(") or Fe(().  The product carbon C(GR), in

the lattice, and Fe3C from the previous time step are retained as residuals and reintroduced as reactants

in the next time step.  Carbon graphite is permitted to form or be simply transferred from a reactant to a
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product unchanged on the right-hand side if there is excess carbon from the equilibrium calculation in

comparison to what is possibly available to react with the existing iron.  The amount of Fe3C that is

possible, due to diffusion limitations, is formed and carried over to the next time step if the control volume

is below the melting temperature of the iron carbide.  On the other hand, if there is no excess carbon, then

Fe(") or Fe((), depending on the temperature, is formed or carried over to the next time step.  Once this

post equilibrium calculation is made, the final energy change in the control volume is recomputed and the

amount attributable to the residual solids is accounted for as the surface source term.

8.  Application to Point Studies

Three systems are presented in this report including the M829A2 cartridge in an M256 tank cannon

and both the 616W-APFSDS original cartridge, which had a propellant adiabatic flame temperature near

3,650 K, and the M791-APDS-T training round in the 25-mm Bushmaster cannon.

The calculations for the M829A2 cartridge assume an initial chrome defect or chip.  Two calculations

were then performed for this region using exposed steel.  The first involved normal or standard heat

transfer, and the second applied the previously described surface irregularity augmentation to the heat

transport due to the actual depth of the defect.  The calculations were performed over a region from the

forcing cone to about 800 mm down-bore.

Surface temperatures of the first calculation, without the surface roughness factor, are presented in

Figure 2.  As shown, all three locations reach the user-prescribed melting temperature of 1,723 K.

Figure 3 shows the amount of material lost over the investigated region in comparison to experimental

data [26, 27] for three gun tubes.  The experimental defect data show widely varying erosion once a defect

is formed, with the average presented as a straight line.  The tube history is provided as the number of

rounds fired to the commencement of the series of M829A2 cartridges, the number of M829A2 cartridges

fired, and the serial number of the tube.  
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Figure 2. Gun Tube Surface Temperatures at Three Axial Locations for a Single Firing of an
M829A2  Cartridge in an M256 Tank Cannon Without Surface Roughness
Augmentation to the Heat Transport.

Figure 3. Average Erosion Depth per Round at the Bottom of a Chrome Chip in an M256 Tank
Cannon Firing an M829A2 Cartridge Without Surface Roughness Augmentation to
the Heat Transport.
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Figure 4 shows the effect of added surface roughness to the calculation in lengthening the duration of

the melting of the surface.  Correspondingly, in Figure 5, the amount of erosion is shown to also increase.

The resultant amount of erosion appears to be much closer to the average amount from the experimental

“pit-tracking” data in Figure 5 with the augmentation than without it in Figure 3.

Figure 4. Gun Tube Surface Temperatures at Three Axial Locations and for a Single Firing of
an M829A2 Cartridge in an M256 Tank Cannon With Surface Roughness
Augmentation to the Heat Transport.

The total erosion in these calculations is due to the sum of the gross melting and the melting of iron

carbide created near the surface due to the carbon diffusion.  This effect can be seen in Figure 6 without,

and in Figure 7 with, the surface roughness augmentation to the heat transport.  Figure 6 shows the surface

temperature, which does not rise to the melt temperature of the steel substrate.  Material, however, is being

removed at the surface due to the local surface material melt temperature of 1,423 K.  The same figure

presents how the change in phase from " to ( alters the diffusion rate due to different interstitial atomic

mobilities.
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Figure 5. Average Erosion Depth per Round at the Bottom of a Chrome Chip for an M256
Cannon Firing an M829A2 Cartridge With Surface Roughness Augmentation to the
Heat Transport.

Figure 6. Surface Temperature and Carbon Diffusion Depth at the Bottom of a Chrome Chip in
an M256 Tank Cannon Firing an M829A2 Cartridge, Presented at 1,778 mm From the
Rear Face of the Tube Without Surface Roughness Augmentation to the Heat
Transport.
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Figure 7.Surface Temperature, Carbon Diffusion Depth, and Surface Melting Depth in a
Chrome Chip of an M256 Tank Cannon, Presented 1,350 mm From the Rear Face of
the Tube for an M829A2 Cartridge With Surface Roughness Augmentation to the
Heat Transport.

Figure 7 shows the influence of gross surface melting at the same axial location due to the addition of

surface roughness augmentation.  Once the surface reaches the base material melt temperature, the carbon

diffusion remains constant, as it only depends upon temperature.

The first of the two 25-mm systems in this study is the M791 APDS-T round.  Experimental data were

obtained from a late 1980’s study performed by Veritay Inc. [28] in their instrumented test fixture.  The

data included averaged erosion rate/round (over 20 individual rounds were averaged) at a series of axial

locations given with respect to the commencement of full rifling.  When the calculations were performed

using the interior ballistic data provided by Benet Laboratories [29], the results were presented with respect
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to the rear face of the tube (RFT).  This leads to a possible discrepancy of the actual location of the origin

of rifling as this location has a tendency to move down-bore as the tube has more rounds fired through it.

The surface temperatures of the cannon firing the M791 cartridge are shown in Figure 8.  While these

temperatures do not reach the bulk melting temperature of the steel used in the 25-mm  nonchromed

nitrided Bushmaster cannon of 1,792 K, there is material loss nonetheless.  The nitriding was not taken into

account in these calculations and would cause some differences in subsurface carbon diffusion.  Again, as

in the previous example, the material is being lost in this case due to the material transformation to iron

carbide and the subsequent removal of this very thin layer when the surface temperature is above the melt

temperature of the iron carbide.

Figure 8. Surface Temperatures for Three Axial Locations of an M791 Cartridge Fired in an
M242, 25-mm Bushmaster Cannon.
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The result of the computed surface material removal for the M791 is presented in Figure 9 along with

the experimental data and the location of full rifling.  Although the axial location seems to be shifted as

stated before, the magnitude of material loss appears to be correct.  The surface roughness augmentation

to the heat transfer was not used in this case as the surface is not chromed and therefore does not have the

site for high recirculating flows.

Figure 9. Computed and Experimental Erosion per Round for an M791 Cartridge Fired in a
25-mm Bushmaster Cannon.  Note That the Experimental Data Were Originally
Presented With Respect to the Commencement of “Full Rifling,” While the
Computational Data Are Presented With Respect to the RFT.

 

Figure 10 shows the bore surface temperatures for the cannon firing the 616W (M919 original)

cartridge.  Also, for this case, the melting temperature of the base material of the Bushmaster cannon is not

reached.  However, the temperatures are indeed somewhat higher in this case than for the M791 cartridge,

and the surface material removed, shown in Figure 11, reflects the higher diffusion of carbon into the gun

surface.
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Figure 10.Surface Temperatures for Three Axial Locations for a 616W (Original M919
APFSDS) Cartridge Fired in an M242 Bushmaster Cannon.

Figure 11.Computed and Experimental Erosion per Round for a 616W (Original M919 APFSDS)
Cartridge Fired in an M242, 25-mm Bushmaster Cannon.  Note That the Experimental
Data Were Originally Presented With Respect to the Commencement of “Full
Rifling,” While the Computational Data Are Presented With Respect to the RFT.
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The experimental data in Figure 11 again appears to be shifted with respect to the commencement of

rifling, while the magnitude tracks the experimental data well.  From Figures 11 and 9, it is shown that the

proportional experimental increase in material loss between the M791 and 616W is closely represented

in the numerical calculations.

9.  Concluding Remarks

An analytical description of the processes involved in the mechanistic description of the gas-surface

interaction has been presented to include the melt wipe mechanism, equilibrium chemistry, surface control

volume, heat transfer and roughness augmentation, as well as the multicomponent mass transport, and

subsurface carbon diffusion.

Three systems were investigated:  the M829A2 120-mm tank cartridge, and two 25-mm cartridges:

the M791-APDS-T and the 616W-APFSDS.  The calculated erosion for the M829A2 cartridge, given

the assumption of a chip in the chrome plating, compared well with the experimental data once the surface

roughness was incorporated into the heat transport.  Neither of the 25-mm systems reached the bulk

melting temperature of the base material for the Bushmaster barrel, although both erode.  Carbon diffusion

limited erosion predicted the amount of material lost in the M791 and 616W cartridges reasonably well.

Other constitutive models and/or conceptual ideas and additional physics are to be investigated to

determine their level of importance to surface degradation/erosion, thus providing insight into the

mechanisms for erosion and possibly the mitigation thereof through additives to control the heat transfer,

gas chemistry, or possibly altering the structure or physics of the surface.
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Appendix A:

Blake Thermochemical Input Decks for
Propellants Used in This Study 
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Blake Thermochemical input deck for the 25-mm M791 Cartridge using HC-33 propellant.

TIT,HC-33 NOM
ING
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1325,87.87,NG,6.99,PEG,.68,KN,.66,ALC,.5,ACETON,1.4,H2O,.9,C,.15,
DPA,0.85
UNI,ENG
GUN,.05,.05,.6
QUIT

Blake Thermochemical input decks for the Original 25-mm M919 Cartridge.

TIT,HES9053 (L-751) Propellant
ING
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1300,34.40,NG,14.91,RDX,45.60,TRIAC,2.90,PEG,0.31,EC,0.52,KN,0.75,
KS,0.75,H2O,.10,C,0.20
UNI,ENG
GUN,.05,.05,.6
QUIT

TIT,HES9053 (L-752) Propellant
ING
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1300,35.38,NG,14.71,RDX,43.48,TRIAC,3.04,PEG,1.36,EC,0.52,KN,0.84,
KS,0.77,H2O,.23,C,0.20
UNI,ENG
GUN,.05,.05,.4
QUIT

TIT,HES9053 (L-753) Propellant
ING
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1300,35.71,NG,12.73,RDX,44.78,TRIAC,3.24,PEG,1.08,EC,0.63,KS,1.05,
KN,0.78,H2O,.24,C,0.020
UNI,ENG
GUN,.05,.05,.4
QUIT

TIT,HES9053 (L-754) Propellant
ING
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1300,32.25,NG,14.94,RDX,47.73,TRIAC,2.75,PEG,0.35,EC,0.45,KS,0.78,
KN,0.75,H2O,.23,C,0.20
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UNI,ENG
GUN,.05,.05,.4
QUIT

Blake Thermochemical input deck for 120-mm Cartridges using nominal JA2 propellant.

TIT,JA-2 - NOMINAL
PRL,CON,2
REJ,H2S,S2O,SO2,K$,KOH$,K2O,K2O2,KO2,K2,NO2,HNO3
REJ,KCO$,KSO$,K2O$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$
REJ,C2N,C2H,C2,CH2O,CH,CH2,CH3,CN,C2H2,C2H4,C2N2,
REJ,ALOH,A2O2,AHO2,ALOF,AIO2,BAO$
REJ,C(S),K2CO3$,K2SO4$,K2S$
CM2,NC1298,59.02,NG,14.78,DEGDN,24.60,AKAR2,.69,BAO,0.0496,
C,.0496,H2O,.5
UNI,ENG
GUN,.05,.05,.4
QUIT
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Appendix B:

XKTC Interior Ballistic Input Decks
Used in This Study
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An XKTC input deck of an M829A2 round (Courtesy of Dr. G. Peter O’Hara, Benet Labs)

M829A2 APFSDS-T
TTFFTTT001000001060000010010000000
   69   -3    099999           .0001
     0.015   186.660   0.00025     2.000     0.050     0.005    0.0001    0.0001
 1000  100 1100  100 1500  100
    6    4    3    4    0    0    3    2    0    0    0    8    0    0    0    1
    0    0    0
 5.290E+02 1.470E+01 2.890E+01 1.400E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 5.290E+02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  Stick              0.000E+00 7.500E-01 4.400E-01 5.763E-02 0.000E+00 0.000E+00
 1.925E+01 2.200E+01 8.600E-01 0.000E+00 0.000E+00
    7 4.310E-01 3.100E-02 8.750E-01 7.000E+00 0.000E+00    0 0.000E+00    0
 1.000E+04 1.000E+00 4.175E+04 0.000E+00 5.000E-01
 1.000E+04 4.040E-03 7.162E-01 1.000E+05 8.600E-04 8.796E-01 0.000E+00 8.000E+02
 2.770E-02 1.345E-04 6.000E-01
 2.037E+07 2.482E+01 1.227E+00 2.698E+01
  Stick              7.500E-01 1.925E+01 1.490E+00 5.763E-02 0.000E+00 0.000E+00
    7 3.840E-01 3.900E-02 5.980E-01 7.000E+00 0.000E+00    0 0.000E+00    0
 1.000E+04 1.000E+00 4.175E+04 0.000E+00 5.000E-01
 1.000E+04 4.040E-03 7.162E-01 1.000E+05 8.600E-04 8.796E-01 0.000E+00 8.000E+02
 2.770E-02 1.345E-04 6.000E-01
 2.037E+07 2.482E+01 1.227E+00 2.698E+01
  JA2H -             7.500E-01 1.925E+01 1.600E+01 5.763E-02 0.000E+00 0.000E+00
   15 6.710E-01 3.700E-02 8.750E-01 1.900E+01 0.000E+00    0 0.000E+00    0
 1.000E+04 1.000E+00 4.175E+04 0.000E+00 5.000E-01
 1.000E+04 4.040E-03 7.162E-01 1.000E+05 8.600E-04 8.796E-01 0.000E+00 8.000E+02
 2.770E-02 1.345E-04 6.000E-01
 2.037E+07 2.482E+01 1.227E+00 2.698E+01
 9.968E+06 3.093E+01 1.221E+00 2.300E+01
 0.000E+00 2.500E-04 1.250E-03 1.500E-03
 5.000E-01 4.800E+00 4.810E+00
 0.000E+00 0.000E+00 0.000E+00
 1.400E+01 1.400E+01 0.000E+00
 1.400E+01 1.400E+01 0.000E+00
 0.000E+00 0.000E+00 0.000E+00
 0.000E+00 2.250E+00 3.000E+00 3.090E+00 1.900E+01 3.090E+00 2.200E+01 2.380E+00
 2.373E+01 2.360E+00 2.087E+02 2.360E+00
 0.000E+00 1.000E+02 1.000E+00 1.500E+03 1.500E+00 4.000E+02 2.500E+02 4.000E+02
 1.400E+00 1.470E+01 5.290E+02 2.890E+01
 5.000E-02 4.850E-01 6.000E+00 2.000E+00
 7.770E+00 2.280E-02 7.000E-01
 0.000E+00 1.000E+01 0.000E+00 1.000E+00 1.000E+00
 2.200E+01 1.720E+01 4.400E+01 0.000E+00 0.000E+00 4.057E+03
       3.0       19.       30.       41.       60.       90.      120.     19.

    7    2    0    0    0    0    0    1    0    0    0    0    0    0
 0.000E+00 0.000E+00 7.200E-01 5.930E-01 4.380E+00 5.930E-01 4.880E+00 7.300E-01
 6.750E+00 7.300E-01 1.196E+01 1.170E+00 1.546E+01 1.420E+00
    3    4    0    0
 0.000E+00 1.450E-01 1.800E+01 1.450E-01 2.220E+01 5.000E-03
 2.950E-02 1.470E+01 4.550E-02 1.100E+04 4.970E-02 2.500E+04 5.480E-02 1.000E+05
    2    0    0
 1.000E+04 1.310E-04 1.301E+00 1.000E+05 3.950E+00 1.761E-01
 0.000E+00 8.000E+02 2.770E-02 1.345E-04 0.000E+00
 9.300E+06 2.239E+01 1.258E+00 
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An XKTC input deck of an M791 round (Courtesy of Dr. G. Peter O’Hara, Benet Labs)

 25MM M242          M791 - 135 gm       RESISTANCE-PERRIN
TTFFTTT001000001010100010000000000
   75   -2    099999    0    0   0.00001
     0.003    73.400    0.0002     1.500     0.050     0.01     0.0001    0.0001
 1000   50 1100   50
   10    3    3   10    2    0    1    1    0    0    0    5    0    0    0    0
    0    0    0
 5.300E+02 1.470E+01 2.890E+01 1.400E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 5.300E+02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 7 Perf HC33         7.300E-02 4.447E+00 2.141E-01 5.560E-02 0.000E+00 0.000E+00
    7 1.040E-01 1.000E-02 1.100E-01 7.000E+00 0.000E+00    0 0.000E+00    0
 1.740E+03 1.000E+00 5.000E+04 0.000E+00 5.000E-01
 4.000E+03 1.390E-03 8.053E-01 0.000E+00 5.300E+02 2.770E-02 1.345E-04 6.000E-01
 1.837E+07 2.511E+01 1.234E+00 2.801E+01
 1.837E+07 1.837E+07 9.500E-01 1.000E+00 2.370E-03
 9.968E+06 3.093E+01 1.221E+00 4.348E-02
 0.000E+00 1.200E-04 2.500E-04
 7.300E-02 2.730E-01 1.073E+00
 0.000E+00 0.000E+00 0.000E+00
 0.000E+00 3.000E+00 1.000E+00
 0.000E+00 0.000E+00 0.000E+00
 0.000E+00 2.500E-01 7.300E-02 2.875E-01 1.450E-01 4.865E-01 2.800E-01 5.800E-01
 5.530E-01 6.615E-01 8.330E-01 6.735E-01 3.876E+00 6.715E-01 4.447E+00 4.815E-01
 4.983E+00 5.040E-01 7.886E+01 5.040E-01
 0.000E+00 2.500E+03 3.600E-02 3.519E+03 9.600E-02 4.738E+03 2.040E-01 4.738E+03
 7.480E-01 2.126E+03 2.190E+00 1.220E+03 5.096E+00 8.520E+02 1.109E+01 7.360E+02
 2.941E+01 5.640E+02 9.000E+01 5.640E+02
 7.847E+00 2.280E-02 7.000E-01
 0.000E+00 5.300E+02 7.777E+01 5.300E+02
 0.000E+00 1.000E+00 1.000E+00 0.000E+00 1.000E+00
 4.700E+00 2.977E-01 1.000E-02 6.000E+00 0.000E+00 0.000E+00
      0.00      4.25       4.5      4.75      5.00
      0.07      0.00      0.00    2    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0  
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An XKTC input deck of an “original” M919 round (Courtesy of Dr. G. Peter O’Hara, Benet Labs)

 25MM M242           M919 Round - 132 gm RESISTANCE-PERRIN
TTFFTTT001000001040100010000000000
   7099999    099999    0    0   0.00001
      .005    74.105   0.00002     1.500     0.050     0.003    0.0001    0.0001
   10    3    3   10    2    0    1    2    0    0    0    5    0    0    0    0
    0    0    0
 5.300E+02 1.470E+01 2.890E+01 1.400E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 5.300E+02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 94.5 gm - HES-9053  7.300E-02 4.647E+00 2.083E-01 6.033E-02 0.000E+00 0.000E+00
    7 1.300E-01 1.250E-02 1.375E-01 7.000E+00 0.000E+00    0 0.000E+00    0
 1.740E+03 1.000E+00 5.000E+04 0.000E+00 5.000E-01
 4.000E+03 1.633E-04 1.179E+00 5.000E+03 5.077E-03 6.998E-01 0.000E+00 8.020E+02
 2.770E-02 1.345E-04 6.000E-01
 2.028E+07 2.498E+01 1.232E+00 2.847E+01
 1.927E+07 2.028E+07 9.000E-01 1.000E+00 2.370E-03
 9.968E+06 3.093E+01 1.221E+00 4.348E-02
 0.000E+00 1.200E-04 2.500E-04
 8.730E-01 1.073E+00 1.873E+00
 0.000E+00 0.000E+00 0.000E+00
 0.000E+00 3.000E+00 1.000E+00
 0.000E+00 0.000E+00 0.000E+00
 0.000E+00 2.500E-01 7.300E-02 2.875E-01 1.450E-01 4.865E-01 2.800E-01 5.800E-01
 5.530E-01 6.615E-01 8.330E-01 6.735E-01 3.876E+00 6.735E-01 4.447E+00 4.815E-01
 4.983E+00 5.040E-01 7.886E+01 5.040E-01
 0.000E+00 2.500E+03 3.600E-02 3.519E+03 9.600E-02 4.738E+03 2.040E-01 4.738E+03
 7.480E-01 2.126E+03 2.190E+00 1.220E+03 5.096E+00 8.520E+02 1.109E+01 7.360E+02
 2.941E+01 5.640E+02 9.000E+01 5.640E+02
 1.400E+00 1.470E+01 5.300E+02 2.890E+01
 7.847E+00 2.280E-02 7.000E-01
 0.000E+00 5.300E+02 7.886E+01 5.300E+02
 2.500E+01 7.600E+01 0.000E+00 0.000E+00 1.000E+00
 4.753E+00 2.913E-01 1.000E-02 6.000E+00 0.000E+00 0.000E+00
      0.00      4.00      4.25       4.5      4.75      5.00    
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45
gun tube erosion, heat transfer, carburization

   Future systems performance requirements have led to a heightened awareness of the erosion issue and to the
development of erosion investigations in the U.S. Army and Navy.  These investigations involve experimental and
modeling efforts to understand the thermal, chemical, and mechanical contributions to erosion/wear.  A description of
the mechanistic erosion representation follows in this report.  The calculation procedure is illustrated, including details
of the mass transport scheme, gas-surface interface, surface melt wipe model with dynamic gridding, and the
equilibrium kinetics model, which utilizes the NASA Lewis thermochemcial library.
   The following cartridges are investigated:  the M829A2 APFSDS in the M256 120-mm tank cannon and the
M791-APDS-T and 616W-APFS (the "original" M919), both in the 25-mm Bushmaster cannon.  The resulting mass lost
per round for these systems compares well qualitatively with the experimental data, providing some support to the
assumptions in the code.  The primary conclusion is that carburization leading to iron carbide formation is an
important contributing factor for much of the material lost from the steel barrel once it is exposed through cracks or
chips in the surface coating.
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